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Abstract
The exact equation describing the shape of a fluid drop under the action of local
surface stresses induced by colloidal interactions is derived without resorting to
any of the approximations inherent in the profile equation currently employed
in the literature. The exact equation implies, and numerical examples confirm,
that repulsive external (i.e. positive) surface energies assist in stabilizing the
drop against deformation, while attractive (i.e. negative) energies destabilize
the drop, promoting or enhancing deformation. An inherent singularity in
the governing differential equation (absent from the approximate equations
currently used) when the surface energy (surface tension) is identically matched
by an external attractive energy represents an instability limit. Explicit bounds
are established for a further instability criterion and for the hydrostatic pressure
difference across the interface. An exact equation for the radial extent of the
sessile drop and some numerical examples are also presented.

PACS numbers: 61.20.−p, 02.30.Hq, 47.55.Dz, 68.10.−m, 82.70.Dd,
83.50.−v

1. Introduction

In the last decade there has been a number of efforts to characterize the colloidal interaction
of fluid drops with themselves or with solid particles or macroscopic surfaces [1–11]. Fluid
drops in the form of gas bubbles or oil emulsion droplets or biological fluid cells and vesicles
are abundant in a number of important technological and industrial systems. For example,
gas bubbles are employed in water purification systems, in the paper and pulp industry for the
de-inking of recycled paper and in the minerals industry for fine particle separation. Oil
emulsion droplets appear in the pharmaceutical industry as drug delivery systems and arise
naturally in the food industry. They also arise as a bi-product of the techniques used in advanced
oil recovery. The abundance of such fluid systems in technical applications calls for more
concentrated studies of fluid drops, since their properties differ greatly from their solid particle
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Figure 1. Schematic diagram showing the geometry assumed for the interaction of a fluid drop
and a spherical particle.

counterparts. The increasing experimental interest in the interaction of colloidal particles with
fluid drops using the atomic force microscope (as well as other techniques) motivates a rigorous
theoretical description of the ensuing shape of the deformable fluid boundaries. Relatively
recent theoretical studies [12–14] have already indicated the importance of being able to
describe the shape of fluid drops under applied stress due to colloidal interactions. This work
has now been followed up and extended to the AFM geometry by a number of groups [11,
15–18] producing a considerable amount of qualitative and quantitative information about
the response of bubbles and drops to particle interactions. However, the diverse range of
conditions that arise in colloidal situations as well as the needs of experimentalists [1–11]
make clear the necessity of more exact treatments, free of as many approximate restrictions as
possible. This is the aim of the present paper.

The physical model we study corresponds to the configuration found in an ideal atomic
force microscope experiment. An axisymmetric liquid drop is sessile on a solid substrate
(in the case of a gas bubble, it would be considered pendent). Positioned above, is a
spherical solid colloidal particle (see figure 1). This particle interacts with the fluid droplet via
equilibrium colloidal forces across an immiscible bulk continuum. The short-ranged nature
of the interaction leads to a nonuniform stress distribution that acts across the top of the drop,
decaying in strength with increasing distance from the apex. It is this nonuniformity that leads
to the increased difficulty in determining the equilibrium shape of the drop. The usual point of
departure for the analysis of such or similar systems has been to define a thermodynamic
potential, taking into account all energetic contributions which affect the droplet shape,
including a contribution from the induced stress distribution. This functional is minimized
with respect to the set of all allowed profiles to give the equilibrium shape of the drop. To
simplify the situation, earlier efforts invoked approximations from the outset, simplifying in
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particular the form of the additional term due to the interaction. This approximation, often
referred to as the Derjaguin approximation in the colloid literature [19], is fundamentally
geometrical and takes advantage of the short-ranged nature of the colloidal forces. While its
employment seems harmless and indeed appealing, being furthermore numerically justified in
some situations, we show that in the present context of a deformable interface, it fails to reveal
the true physical behaviour of the system in more general settings.

This paper is organized as follows. In section 2 we derive the exact differential equation
describing the profile shape of an axisymmetric sessile drop under external influences, under
two sets of conditions. The first covers cases for which the shape of the drop can be uniquely
described in nonparametric form {(r, z(r))}. Next, we consider those cases where the interface
must be represented in parametric form {r(s), z(s), ψ(s)}, where s is the arclength parameter.
In an exact calculation, whereby one self-consistently determines both the droplet form and
the externally imposed surface energy, itself a function of the shape (r, z) (e.g. the equilibrium
electrical double layer in the liquid external to the drop), we argue that this equation must be
employed. In section 2.3 we discuss some of the implications of this equation. In section 2.4
we provide some numerical results which highlight the differences between the solutions of
this new equation and the equation currently in use in the literature. We summarize the major
findings of the paper in the final section.

2. The profile equation and integrals

Let the drop, �, have total volume, V�, interfacial area, A�, density difference, �ρ, with
respect to a bulk continuum phase, and occupy a circular contact area A = πR2

c of the
substrate, , with a contact radius, Rc. Also suppose that the drop meets the substrate at an
angle, α, measured from within. The drop interacts with a solid particle of radius, rp, across
the immiscible bulk liquid via equilibrium colloidal forces. The drop is thus subject to
a nonuniform energy density acting over its surface. For convenience, we have supposed
spherical particle geometry with the particle positioned above the apex of the drop so that the
induced load preserves the axisymmetry of the drop. The constrained thermodynamicpotential
or free energy functional, mentioned earlier as being the key entity for the determination of
the equilibrium shape of the drop, is written as

� = E − λ(V − V�) (1)

in which the first term is the total energy of the drop,

E = γA� +G
∫
V

z dV − µA +
∫
�

σ dS (2)

while the last term in (1) represents the imposed constraint of constant volume. λ is the
corresponding Lagrange multiplier. The constraint of constant volume is reasonable for liquid
drops since to a good approximation most liquids can be considered incompressible. For gas
bubbles it is, however, more appropriate to constrain the number of molecules, Nmol in which
case a bulk Helmholtz free energy of the form

H = NmolkT − NmolkT ln
(
�3

molV�

)
+ p0V�

should replace the volume term in (1) (T is the absolute temperature, k is Boltzmann’s constant,
�mol is the thermal wavelength of the molecules and p0 is the external pressure). For more
detailed discussion see [18]. The terms in (2) are, respectively, the surface energy associated
with the area of the fluid drop surface exposed to the bulk liquid, the gravitational energy
arising from the density difference between interior and exterior fluids, the energy of contact
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of the drop with the solid substrate, , and, finally, the surface energy associated with the
interaction of the drop with a neighbouring body. G = g�ρ, where g is the acceleration due
to gravity. The term involving µ can either be thought of as a further area constraint, in which
case µ is another Lagrange multiplier, or as an energy term in which µ is a specified constant
related to properties of the surface and the fluids. In any eventµ is related to the contact angle,
α, via µ = γ cosα. σ is the induced, nonuniform surface free energy density on the drop
surface.

The colloidal forces involved are short ranged compared to the length scale of either the
drop or the solid body. This accounts for the nonuniformity of the surface energy, σ , which
we assume to be continuous and differentiable. Thus, the interaction free energy density is
defined and nonzero on a finite region,�, of the droplet surface, �. Specifically,� ⊂ � and
for some r0,

� = {(r, z̃(r)): 0 � r < r0 � R, 0 � θ � 2π}.
Here, R is a measure of the size of the drop,

R ∼
(

3

4π
V�

)1/3

.

The short range implies that r0 will be much smaller than the length scale of the undeformed
sessile drop (r0 � R) and will, in the extreme case, be more of the order of the size of the
interacting colloidal particle, r0 ∼ rp.

2.1. Profile equation in nonparametric form

Assuming no point(s) of vertical tangency, certain only when the drop meets the substrate at
acute angles, α < π/2, the sessile drop is concave and the profile can be defined by the set

� = {(r, z̃(r)): 0 � r � Rc, 0 � θ � 2π}.
In this nonparametric form the Lagrangian free energy functional (1) becomes

�(z̃(r)):=
∫ Rc

0
f (r, z̃(r), z̃(r)) dr = γ

∫ Rc

0
2πrW(r) dr +G

∫ Rc

0
πrz̃(r)2 dr

− λ
(∫ Rc

0
2πrz̃(r) dr − V�

)
+

∫ Rc

0
2πrW(r) σ (r, z̃(r)) dr. (3)

Here, W(r) = (1 + z̃′(r)2)1/2 is a factor appearing in all surface integrals accounting for
the curvature of the profile. This factor is ignored in the geometry-inherent, Derjaguin
approximation.

The equilibrium shape of the drop is given by the profile which minimizes this functional.
Assuming a priori that a minimum exists, denoted by {(r, z(r))}, write

z̃(r) = z(r) + δz(r)

for general profile members of the set in the domain of the nonlinear functional, �. The first
variation of � vanishes when evaluated at the equilibrium profile since the functional is, by
definition, then minimized. The variation leads to the Euler–Lagrange equation [20] satisfied
by the equilibrium profile

∂f

∂z
− ∂

∂r

(
∂f

∂z′

)
= 0. (4)
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Furthermore, the boundary condition to be satisfied at the extreme, i.e., the contact radius Rc,
is

z′(Rc)
∂f

∂z′
(Rc, z(Rc), z

′(Rc))− f (Rc, z(Rc), z′(Rc)) = 0. (5)

Performing the indicated derivatives in (4) and (5), we arrive at the profile shape equation[
rz′(r)
W(r)

(γ + σ(r, z(r)))

]′
= r[Gz(r)− λ +W(r)σz(r, z(r))] r ∈ (0, Rc) (6)

together with the conditions∫ Rc

0
2π rz(r) dr = V� γ cos α = µ. (7)

Equation (6) is the principal result of this paper. Within the limits of the model, this is the
exact equation to be solved for the profile.

It is interesting to compare (6) first with the Young–Laplace equation one derives (in the
same manner) for an isolated sessile drop under gravity,[

γ
rz′(r)
W(r)

]′
= r(Gz(r)− λ) r ∈ (0, R). (8)

More importantly, (6) is to be compared with the profile equation derived using the Derjaguin
approximation commonly used in the literature to describe a drop in the same physical situation
as here, [

γ
rz′(r)
W(r)

]′
= r [Gz(r)− λ + π(Dv(r))] r ∈ (0, R). (9)

In the last term in (6) there appears the partial derivative of the surface energy density,

σz(r, z(r)) ≡ ∂σ

∂z
.

In the context of colloidal interactions, σ is the interaction free energy per unit area at (r, z(r)),
and σz is the vertical component of its gradient. σ can be approximated by the interaction
free energy between infinite planes at a local separation, D(r), the shortest distance between
the particle surface and a given interface point (r, z(r)), defined in section 2.4 [12, 16, 18].
This is one of the factors constituting the Derjaguin approximation [19]. In the planar case,
the gradient of the interaction free energy is π(D(r)), the pressure between infinite planes
separated by D(r). Strictly speaking, the pressure acts in the direction of the normal to the
interface, which is not generally in the vertical direction. Hence, one has formally

∂σ

∂z
= ∂σ

∂D

∂D

∂z
= −π(D(r))∂D

∂z
.

A further aspect in the Derjaguin approximation is that Dv(r), the vertical distance between
the interface at (r, z(r)) and the particle, replaces D(r). Thus, the Derjaguin approximation
would have that

σz(r, z(r)) = ∂σ(Dv(r))

∂Dv

∂Dv

∂z
= −π(Dv(r))∂Dv

∂z
= π(Dv(r)).

This accounts for the appearance of π(D) on the right-hand side in (9). In summary, the
present approach goes beyond the Deriaguin approximation in two ways. First, it includes the
full area measure of the interface, W(r). Second, it includes the shortest distance between
the interface to the particle, D(r), which is not the vertical separation, Dv(r). We remark
here that as focus is placed on points on the drop interface (all integrals are evaluated over the
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interface), there appears a lack of symmetry in the distance determination in that we search
for the corresponding closest points on the particle surface, rather than the other way around.
In the case of two deformable fluid interfaces, if one still wished to employ the plane–plane
surface interaction approximation (i.e. employment of π(D)), then some sort of compromise
distance definition would be necessary. However, all ambiguity would be removed in a fully
self-consistent analysis. The location and influence of a second body would only appear
implicitly via a self-consistent external field acting locally on the given deformable surface.

In the present approach the force is the integral of −W(r)π(D(r))∂D/∂z over the surface.
The Derjaguin approximation does away with the first and last factors and employs Dv(r)
instead of D(r) in the argument of π(·). That is, the total force acting on the drop is

F =
∫ Rc

0
2πrW(r)σz(r) dr. (10)

Clearly, both (6) and (9) reduce to (8) in the absence of interaction. However, comparison
of (6) with (9) suggests the severity of error introduced by using the Derjaguin approximation
too early. While the appearance of the curvature factor in the third term on the right-hand
side in (6) is of arguable importance, the appearance of the factor (γ + σ(r, z(r))) on the left-
hand side has serious repercussions. Considering that lowering the total interfacial energy by
minimizing contact with its environment is predominantly what drives an immiscible droplet to
assume its most optimum shape, one can infer from (6) that a positiveσ contribution effectively
increases the surface tension and thereby increases the drop’s resistance to deformation. A
negative σ contribution not only implies the opposite, it also introduces the possibility of a
singularity in the equation, when (γ + σ(r, z(r))) vanishes. A zero value of (γ + σ(r, z(r)))
represents a limit to the existence of a physically viable solution. The existence limit can be
interpreted as a sufficient condition for instability of a droplet under locally applied attractive
stresses. These three consequences cannot be inferred from (9) which is therefore qualitatively
deficient in certain regimes.

2.2. Profile equation in parametric form

In more general situations, the mapping r → z(r) is not necessarily injective, e.g., when
the contact angle α > π

2 , implying at least one point of vertical tangency. In these cases
it is much more convenient to express the profile in parameter form. The most convenient
parametrization is in terms of the arclength, s, measured from the apex,

� = {(r̃(s), z̃(s)): 0 � s � Sc, 0 � θ � 2π}
where

(r̃(Sc), z̃(Sc)) = (Rc, 0). (11)

The free energy functional (1), now a functional of the pair (r̃(s), z̃(s)) is

�(r̃(s), z̃(s)):=
∫ Sc

0
f (r̃(s), r̃s (s), z̃(s), z̃s (s)) ds = γ

∫ Sc

0
2πr̃(s)W(s) ds

+G
∫ Sc

0
πr̃(s)r̃s (s)z̃(s)

2 ds − λ
(∫ Sc

0
2πr̃(s)r̃s (s)z̃(s) ds − V�

)

+
∫ Sc

0
2πr̃(s)W(s)σ (r̃(s), z̃(s)) ds − µπr̃(Sc)2. (12)
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Here, W(s) = (r̃s (s)
2 + z̃s (s)2)1/2. The equilibrium shape is found on minimizing this

functional with respect to all profiles that preserve arclength. A priori existence of a minimizing
profile is assumed, denoted by the pair (r(s), z(s)). We write arbitrary profiles as{

r̃(s) = r(s) + δr(s)
z̃(s) = z(s) + δz(s)

where (δr, δz) are arbitrary perturbations. The condition that the first variation vanishes,
δ� = 0, for arbitrary δr and δz [20] implies the following pair of equations:[(
r(s)zs(s)

W(s)

)
(γ + σ(r, z))

]′

s

= Gr(s)z(s)− λr(s)rs (s) + r(s)W(s)σz(r, z) (13a)

[(
r(s)rs(s)

W(s)

)
(γ + σ(r, z))

]′

s

= −Gr(s)z(s) + λr(s)zs (s)

+ r(s)W(s)σr (r, z) +W(s)(γ + σ(r, z)) (13b)

for s ∈ (0, Sc), with boundary condition

γ
rs(Sc)

W(Sc)
= µ. (14)

Defining {
rs(s) = cos(ψ(s)) s ∈ (0, Sc)
zs(s) = sin(ψ(s)) s ∈ (0, Sc)

in terms of ψ(s), the slope of the profile at the point (r(s), z(s)), we can eliminate the
factor W(s) = (rs(s)

2 + zs(s)2)1/2 = 1 from the equations. Furthermore, performing the
differentiations on the left-hand side of (13), multiplying (13a) by cos(ψ) and (13b) by sin(ψ)
and subtracting, one obtains the relatively simple system of equations

rs(s) = cos(ψ) (15a)

zs(s) = sin(ψ) (15b)

(γ + σ(r, z))ψs(s) = (Gz(s)− λ)− (γ + σ(r, z))
sinψ(s)

r(s)

+ (σz(r, z) cosψ − σr(r, z) sinψ) (15c)

for s ∈ (0, Sc). Writing the slightly odd looking term in (15c) as a scalar product, we find

(σz(r, z) cosψ − σr (r, z) sinψ) = (σr (r, z), σz(r, z)) · (−sinψ, cosψ)

= (σr (r, z), σz(r, z)) · (−zs, rs) = ∇σ · �n. (16)

Since �r(s) = (r(s), z(s)) defines a point on the drop surface, with tangent vector d�r/ds =
(rs(s), zs(s)), the vector �n is clearly the outward directed unit normal to the droplet surface.
Thus, the last term in (15c) is the directional derivative of σ in the direction normal to the
surface. That is, it gives the rate of change of σ in the direction �n. Consequently, (15) can be
rewritten succinctly as the system

rs(s) = cos(ψ) (17a)

zs(s) = sin(ψ) (17b)

ψs(s) = (Gz(s)− λ + ∇σ · �n)
γ + σ(r, z)

− sinψ(s)

r(s)
(17c)

for s ∈ (0, Sc).
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A term similar to (16) is inherent in (6),and appears explicitly if one performs the indicated
derivative of the product on the left-hand side, treating σ as both an explicit and an implicit
function of r. Thus,[
rz′(r)
W(r)

]′
= r(Gz(r)− λ)
γ + σ(r, z(r))

+
r(σz(r, z(r))− σr(r, z(r))z′(r))

W(r)[γ + σ(r, z(r))]
r ∈ (0, R).

Or, more simply[
rz′(r)
W(r)

]′
= r(Gz(r)− λ + ∇σ · �n)

γ + σ(r, z(r))
r ∈ (0, R) (18)

in which the unit normal vector is now �n:= (−z′(r), 1)/(1 + z′(r)2)1/2.
Apart from the inferences drawn earlier, both (17) and (18) demonstrate further the fact

that it is actually the normal component of a stress distribution that determines the profile.
Compare this with the π(Dv(r)) term which appears in (9), implemented as the surface
pressure between two parallel flat surfaces. In any rigorous calculation, one determines the
profile and the σ -field self-consistently. It is evident that in such an effort, either (17) or
(18) should be employed, rather than the deficient augmented Young–Laplace equation (9),
currently used in the literature.

2.3. Explicit integral results

Provided the mapping r → z(r) is injective, one can integrate (6) over the interval [0, r0], the
domain of σ , to yield the expression[

2πrz′(r)
W(r)

(γ + σ(r, z(r)))

]r0
0

= G

∫ r0

0
2πrz(r) dr − λπr2

0 +
∫ r0

0
2πrW(r)∇σ · �z dr

= GV (r0)− λπr2
0 + F. (19)

Here V (r0) is the volume of the drop under the profile from the apex out to the radius, r0,
and F is the vertical component of the total force acting on the drop (the integration of the
z-component of the gradient of σ , as defined in equation (19)). Invoking the definition of
W(r) and the assumption σ(r0, z(r0)) = 0, (19) can be rewritten as

z′(r0) =
(
GV (r0)− λπr2

0 + F
)
/2πr0γ√

1 − [(
GV (r0)− λπr2

0 + F
)
/2πr0γ

]2
. (20)

Ignoring gravity (G = 0) for the moment, this simplifies to

z′(r0) =
(
F − λπr2

0

)
/2πr0γ√

1 − [(
F − λπr2

0

)
/2πr0γ

]2
. (21)

Setting F = 0 further reduces equation (21) to give the slope of the surface of a sphere
of radius Rsphere = 2γ /λ, at a distance, r0, from the symmetry axis. Clearly, for
F = 0, z′(r0) < 0. Consequently, we must have F > λπr2

0 > 0 for the slope to be positive
at this radius and for the drop to have inverted curvature: the case of the so-called ‘wrapping’
(see [18] for more details). In zero gravity we also deduce from (21) that a finite, real-valued
slope necessitates the restriction

−1 <
F − λπr2

0

2πr0γ
< 1. (22)
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The cases

F − λπr2
0

2πr0γ
= ±1

give rise to an infinite slope in the profile which we conjecture earmark further instability
limits. Defining λ ≡ 2γ /Reff , inequality (22) can be rewritten as

2γ

(
1

Reff
− 1

r0

)
<

F

πr2
0

< 2γ

(
1

Reff
+

1

r0

)
(23)

providing us with upper and lower bounds on the total force that can be exerted on the drop.
Exceeding these bounds leads to instability. In practice, Reff is all but equal to the mean
profile curvature at the apex of the isolated drop, Reff(σ ≡ 0) =: R(0)eff (i.e. in the absence of
colloidal forces), and does not change significantly in magnitude as a result of any interaction.
(In performing the calculations presented in section 2.4, we found that even in a severe case
wherein F changed by 5 orders of magnitude, Reff changed only by 3%.) If G = 0, one
can estimate Reff by Rsphere or by Rc without introducing too many errors (see also (29)).
Furthermore, when the two bodies are well separated and the force is weak, r0 will be much
smaller than the radius of the colloidal particle, rp. At smaller separations (e.g. of the order
of a Debye length, in the case of double-layer interactions), the radius, r0, will be of the order
of the colloidal particle radius, rp. Thus, approximate versions of (23) can be obtained and
ordered according to the relative sizes of r0, the isolated drop and the colloidal particle. That
is,

−2γ

r0
<

F

πr2
0

<
2γ

r0
r0 � rp � Reff ∼ Rc (24a)

−2γ

rp
<

F

πr2
p

<
2γ

rp
r0 ≈ rp � Reff ∼ Rc (24b)

0 <
F

πr2
p

<
4γ

rp
r0 ≈ rp ≈ Reff ∼ Rc. (24c)

Since F and rp are accessible (measurable) quantities, inequality (24) (or more exactly (23) is
of immediate use to experimentalists in determining the limits of, essentially, rupture. Note
that the case with gravity is easily accommodated by replacing F with F +GV (r0) in (23) and
(24). Using similar arguments, the true volume term,GV (r0), can be replaced, with negligible
error, by the corresponding term for an isolated drop. Equation (24c) implies that in the case
of attractive forces (F < 0), drops with Rc ∼ rp are unstable to all net attractive interactions
whose ranges encompass the entire drop surface.

The restriction of the domain of σ to [0, r0] can be further utilized in the integration of
(6) over the larger interval [0, r > r0] given by the expression

γ
2πrz′(r)
W(r)

= GV (r)− λπr2 + F r > r0

which is valid provided the mapping r → z(r) remains injective. Thus, the remainder of the
profile beyond the range of the interaction is determined only by the total force that acts on
the drop, and not by the specific interaction law. If we now assume the existence of a set of
points of local maxima, {(rm, z(rm))}, assuming that the applied load gives rise to an inverted
curvature at the apex, then, as pointed out in [18], the above result provides us with a means
of determining their positions. Specifically, the extremum condition, z′(rm) = 0, implies

GV (rm)− λπr2
m + F = 0. (25)
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With gravity present, this is a nonlinear equation for the radii of the extreme points. In the
absence of gravity, the points, if they exist, are found at radii

rm =
√
FReff

2πγ
> r0 > 0. (26)

Note that in this case an obvious necessary condition for an extremum to exist is F > 0. That
is, the total load should be positive. In general, (25) can at best yield a necessary condition
for the existence of points of local maximum.

Of further interest is the extent of substrate area covered by the drop. The total force
acting on the drop is one of the factors determining the equilibrium contact radius of the fluid
drop with the substrate, Rc. Explicitly, the contact radius is the positive root of the quadratic
equation

R2
c − RcReff sin(α)− Reff

2πγ
(F +GV�) = 0. (27)

That is,

Rc = Reff sin(α)

2
+

√
R2

eff sin2(α)

4
+
Reff

2πγ
(F +GV�). (28)

This equation gives the contact radius in terms of macroscopic quantities. On the other hand,
(27) can be considered to express Reff in terms of known Rc, α and measured F. In many
experimental cases [1, 2, 4, 6–11], the measured positive force satisfies 0 < F � 2πγ rp [18],
so that under this condition (27) implies the estimates

R2
c

(
Rc sin(α) +

GV�

2πγ
+ rp

)−1

< Reff < R
2
c

(
Rc sin(α) +

GV�

2πγ

)−1

(29)

in which, again, macroscopic quantities appear. If F < 0, with |F | � 2πγ rp, rp is replaced
by −rp and the orders of the inequalities are reversed. Since in most experimental situations
α ∼ π

2 and rp � Rc, the estimates in (29) indicate that Reff varies little during the course of
an experiment, a feature found previously in numerical work [15] and exploited in section 2.4.
In the absence of gravity, (29) implies Reff ∼ Rc/ sin(α) ≈ Rc for the range of measured
forces.

Treating the total force as a continuous variable, (27) or equivalently (28), restricted to a
domain on which the expression under the square root sign is non-negative, defines Rc as a
continuous function of F. The bounds on the extent of variation of Reff is equivalent to saying
that Reff is a weakly varying function of F. These facts justify the direct differentiation of Rc
with respect to F, treatingReff as essentially constant (|dReff/dF | � 1) and equal to the value
for an isolated drop, Reff ≈ R

(0)
eff . Thus, from (27) the rate at which the contact radius varies

with F is approximately given by

dRc
dF

� R
(0)
eff

2πγ

(
2Rc − R(0)eff sin(α)

)−1
.

This is a differential version of the finite difference equation quoted in [18] (equation (22)) for
the variation of the contact radius with applied load.

Equation (27) can be derived in at least two ways. If the mapping r → z(r) is injective
over the entire profile, then (6) can be integrated directly over the interval (0, Rc). Some
elementary algebra then leads to (27). On the other hand, in the more general case, one can
proceed in the following manner. Let the profile be injective only in the interval (0, r0). Then,
(19) and (20) are valid. Furthermore, for r > r0, (17c) reduces to

ψs(s) +
sinψ(s)

r(s)
= (Gz(s)− λ)

γ
.
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Multiplying the above equation by r(s)rs(s), identifying the resulting left-hand side as

d

ds
(r(s) sinψ(s))

and integrating over the interval [s0, Sc] (i.e. from r(s0) ≡ r0 to r(Sc) ≡ Rc) one obtains

(r(s) sinψ(s))

∣∣∣∣
Sc

s0

= G

γ

∫ Sc

s0

z(s)r(s)rs(s) ds − λ

γ

1

2
(r(s)2)

∣∣∣∣
Sc

s0

.

It can be shown that apart from a factor of 2π , the above integral is precisely the volume under
the profile from r0 to Rc irrespective of the existence of a point of vertical tangency. Thus,

Rc sinψ(Sc)− r0 sinψ(s0) = G

2πγ
(V� − V (r0))− λ

γ

1

2

(
r2

0 − R2
c

)
.

Making use of (19), identifying sinψ(Sc) = −sinα and using the definition λ ≡ 2γ /Reff , we
are led to (27).

2.4. Numerical integrals: repulsive and attractive colloidal interactions

In this section we make use of the equations derived in sections 2.2 and 2.3 to demonstrate
numerically certain consequences of the exact profile equation. In particular, we employ the
parametric equations in section 2.2,

rs(s) = cos(ψ)
zs(s) = sin(ψ)

ψs(s) = (Gz(s)− λ + ∇σ · �n)
(γ + σ(r, z))

− sinψ(s)

r(s)
.

(30)

For demonstration, we shall simply assume that the drop is placed in a spherically symmetric
pressure field centred at, and generated by, the spherical particle. We then investigate the form
of the ensuing drop profile and other consequences, without considering how the presence
of the drop itself influences the true pressure field. That is, we do not engage in a fully
self-consistent calculation. Below we denote by t the spherical radial variable with origin at
the particle centre.

Two forms for the generated pressure field are assumed. The first is a positive,
exponentially decaying field appropriate to a repulsive electrical double-layer interaction,

πDL(t) = 4n0kT ζ
2 exp(−κ(t − rp)) (31)

valid in the linear approximation of the double-layer theory of the interaction of two identically
charged parallel infinite plates. The parameter

ζ =
(

4πeσch

εκkT

)
is a non-dimensional surface charge density [21]; n0 is the number concentration of univalent
electrolyte, σch is the charge density on the surfaces and κ is the Debye parameter. The second
pressure field we implement is negative, decaying as an inverse power of the distance from
the surface of the sphere,

πvdw(t) = − Cvdw

(t − rp)3 . (32)

This is the expected form for an attractive van der Waals interaction between parallel
macroscopic plates of minimum separation t. Cvdw is the Hamaker constant appropriate
to the three phases [19].
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The surface free energies and the corresponding pressure fields are related by the well
known equation

σ = −
∫ ∞

t−rp

π(τ) dτ. (33)

Equations (31) and (32), the interaction forces per unit area, although strictly valid for flat
plates, are used here to generate spherically symmetric pressure fields about the surface of the
spherical particle, decaying with radial distance, t > rp. These pressure fields and the related
interaction free energies act on the surface of the drop at the points {(r, z(r)): 0 � θ � 2π},
where the surfaces of constant pressure, at t = D(r) + rp, intersect the drop surface.

2.4.1. Numerical preliminaries. The system (30) is singular at the origin, even when the
surface energy distribution, σ , is positive. However, this singularity is regular. Indeed,
assuming a finite drop height (lims→0 z(s) = z(0) = z0 < ∞) it can be shown that ψ → 0
as s → 0. Employing L’Hopitals rule on the second term on the right-hand side of (30c), we
deduce the following initial conditions for the dependent variables (r, z, ψ)

rs(0) = 1

zs(0) = 0 (34)

ψs(0) = 1

2
lim
s→0

[
(Gz(s)− λ + ∇σ · �n)

(γ + σ(r, z))

]
.

We remark that Bhatt et al [17] also mentioned this singularity. However, due to typographical
errors the singularity and the above initial conditions at r = 0 are incorrectly represented
in their paper. Equations (30) are solved using a standard Runge–Kutta integration package,
using (34) as starting values. We integrate with respect to arclength out to a preset value, Sc.

System (30) is convenient for determining the profile without heed to any points of
inflection, maxima or vertical tangency. It is, however, inconvenient in that it is difficult to
know a priori the total arclength involved in any given situation. This total arclength must, in
principle, be known in order to evaluate the total volume of the drop and, consequently, the
value of the hydrostatic pressure difference across the interface, λ. On the other hand (6) is
useful for the latter task, although it is restricted to injective profiles. Another possibility is
a system of equations derived from (30). Employing ψ as the independent variable, it is not
difficult to show that the function pair (r(ψ), z(ψ)) defined on the domain ψ ∈ (−π, 0) is a
solution of the system

rψ(ψ) = −r cos(ψ)(γ + σ(r, z))

sinψ(s)(γ + σ(r, z))− r(Gz(s)− λ + ∇σ · �n)
(35)

zψ(ψ) = −r sin(ψ)(γ + σ(r, z))

sinψ(s)(γ + σ(r, z))− r(Gz(s)− λ + ∇σ · �n) .
This system accommodates a vertical tangency point in the profile and can be used to determine
the entire volume, by restricting the numerical integration range to (−α, 0) [14]. However,
(35) is impractical to implement in the case of wrapping since the profile contains another
extreme point (ψ = 0) off the symmetry axis.

To summarise, we conducted our numerical work in the following manner. For given
intrinsic drop properties (γ ,�ρ, V�, α), we numerically integrate (35) for the case σ ≡ 0 and
determine the pressure difference for the drop in isolation,λ ≡ λ0. Provided the drop maintains
a negative curvature at the apex in the presence of the interacting particle, we continue to solve
(35) for σ �= 0, continually updating the pressure difference, λ. As discussed earlier (see (29)),
we find almost negligible variations in the value of this parameter. A comparison of results
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Figure 2. Comparison of the total repulsive double-layer force between a droplet and a
solid particle, (10), based on the exact (6) (curve with symbols) and approximate (9) (curve
without symbols) profile equations. Main figure (inset) shows the force on a linear (log)

scale. The drop and particle are identically charged, σch = 10−5 e Å−2 (lower curves), σch =
10−3 e Å−2 (middle curves), σch = 5 × 10−3e Å−2 (upper curves). Other parameter values are
γ = 72 mN m−1,�ρ = 11.5 gm cm−3 (a mercury–water system), V� = 7 × 10−9 cm3, α =
π/2, λ = 900 Pa, κ−1 = 86 Å, rp = 10−5 cm, Rc = 1.5 × 10−3 cm.

obtained under the stated conditions (represented by the lowest set of curves in figure 2), with
the numerical solution of (30), using only the value λ0 for the isolated drop reveals that the
profile shapes in the neighbourhood of the apex, and the total interaction forces are identical.
This motivates us to focus, for convenience, on (30) using only the value λ ≡ λ0 determined
for the drop in isolation via (35) and the corresponding total arclength. The volume constraint
is, albeit, not satisfied, nor do we have an exactly determined drop height. However, as an
absolute drop height is not essential for our demonstration purposes (see, however, [18]) a
vertical translation of coordinates is introduced placing the origin of the coordinate system,
(0, 0), at the apex. Thus, the drop profile satisfies z(r) < 0 except in the case of wrapping and
(r = 0, z(0) = 0), in all cases.

The distance function D(r) appearing in (9), and employed in (31) and (32) when
t = D(r) + rp, is defined differently in the exact and the Derjaguin approaches. In the
exact approachD(r) is defined as the distance between a point (r, z(r)) on the profile and the
closest point on the surface of the particle. In our example of a spherical particle of radius,
rp, the closest point is the point of intersection of the spherical surface with the normal line
joining the particle centre and the profile point (see figure 1). Elementary geometry leads to
the well defined function

D(r) + rp =
√
r2 + (D(0) + rp − z(r))2 z(r) � 0 (36)

whereD(0) is the inter-surface distance at the apex (r = 0). The distance function employed
in the Derjaguin approximation is defined as the vertical distance between a point (r, z(r)) on
the drop and the point on the particle directly above it,

Dv(r) = D(0) + rp −
√
r2
p − r2 − z(r) z(r) � 0. (37)
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Equation (37) is clearly problematic if the particle radius is smaller than the radial extent
of the drop and the interaction is non-negligible beyond r = rp. This problem is usually
circumvented by adopting a parabolic approximation to the particle surface and extending it
beyond its legitimate range of applicability. This amounts to expanding the root function in a
Taylor series and retaining only the first two terms. Thus,

Dv(r) ≈ D(0) + 1
2r

2/rp − z(r) z(r)� 0. (38)

In the limit rp → ∞ (a planar solid) all three definitions are equivalent. The results of
[5, 12, 14] in particular are thus consistent in this respect with the present approach.

Our calculations show that when the interaction is weak, no difference exists between
these two alternatives. When the interaction is strong and non-negligible beyond r = rp, (37)
cannot be used, leaving one with the alternative of either artificially truncating the interaction
for r > rp, or using (38) from the outset. Both alternatives are consistent with the Derjaguin
approximation, both have their disadvantages and both lead to erroneous results. In our
calculations we have employed both (37) and (38), although we only show results using the
parabolic approximation.

Finally, the distance dependence of surface energy and definition (36) imply theσ -gradient
components

σz ≡ ∂σ

∂z
= ∂σ

∂D

∂D

∂z
= σD

z(r)− (D(0) + rp)

D(r) + rp
(39)

σr ≡ ∂σ

∂r
= ∂σ

∂D

∂D

∂r
= σD

r

D(r) + rp
.

From (33) we infer that

σD = −π(D(r)) �⇒ σz → π(D(r)) as rp → ∞
a result employed in [5, 12, 13] and implemented directly in the Derjaguin approximation for
rp < ∞.

2.4.2. Numerical results. We consider first repulsive interactions: a positive pressure field
and thus a positive energy density over the surface of the drop. Intuitively, under this condition,
the drop surface in the vicinity of the spherical particle will first of all flatten as the particle
approaches (D(0) decreases) and then, as the right-hand side in (30) increases, the curvature
at the apex changes sign and the drop wraps in the direction of the particle.

As expected, when the interaction is weak and the particle size in particular is comparable
to the drop size, both being large, the approximate model based on (9) is in good agreement
with the exact description. However, when the particle size is a small fraction of the droplet
and the interaction force strong and long ranged (κ � 1), discrepancies appear. A comparison
of results based on numerical integrations in (30) and its Derjaguin counterpart for repulsive
forces is shown in figure 2, using both linear (main) and log (inset) scales. At large separations
(D(0) � 1), the majority of the error, evidenced by the difference in slopes (inset), lies in
the poor accounting of distance in the Derjaguin model. An error is evident irrespective of
whether one uses (37) or (38). At shorter separations (main part of figure 2), the difference
in the predicted profiles now also contributes to the difference in the total force: a larger
proportion of the drop is closer to the particle in the exact case, compared to the Derjaguin
prediction. It does not appear that, in the cases shown, the curvature factor, W(r), is so
influential in the depicted differences.

The profiles shown in figure 3 indicate that the exact profile lies under the approximate
profile: by translating the origin to the substrate on which the drops sits, we find that the apex
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Figure 3. Comparison of the profiles predicted by the exact (6) (curve with symbols) and
approximate (9) (curve without symbols) equations, under the conditions of figure 2. The curves

correspond to a minimum separation, D(0) = 20 Å and σch = 10−4 e Å−2 (lower profles) and

σch = 10−3 e Å−2 (upper profiles).

of the exact profile would lie beneath the approximate profile. That is, the exact profile is
more deformed than the approximate one. In these results the stabilizing effect of the surface
energy is not yet significant. On the other hand, in the case of the largest ζ -parameter assumed,
which gives rise to the strongest interaction (uppermost curves, figure 2), the value of σ is
of the order of γ . In figure 4 are presented the exact and approximate profiles determined
under this condition, for the shortest minimum separation,D(0), shown in the inset to figure 2.
The curve generated by (9), which clearly does not represent a physical drop profile (see, in
particular, the inset), nevertheless represents a possible solution of the approximate equation.
On the other hand, the curve pertaining to the exact equation is still a physically viable solution.
The surface free energy density, σ , provides a clear stabilizing effect: an effective increased
surface tension stabilizes the drop reducing its tendency to deform. Naturally, this conclusion is
true even in less extreme cases than the one demonstrated here, although it is not as apparent as
here. An applied positive contribution increases the effective surface tension and diminishes
the deformation. In these examples, we have used fairly large surface tension value of
72 mN/m, corresponding to the air–water interface. In other systems, e.g., oil droplets in
water, especially in the presence of added surfactants, the surface tension can be between a
factor of 2 and a factor of 10 lower [10] (in some extreme industrial conditions even greater
reductions are possible). In such cases, the stabilizing contribution of σ makes its presence
felt under weaker conditions.

For attractive interactions, both σ and σz are negative. Near the apex, the drop now
understandably elongates towards the particle, the curvature being larger than that possessed
by the isolated drop; there is no flattening, no inverted curvature and no off-axis points of
maxima. Under these conditions the Derjaguin approximation is least valid. We therefore
definitely expect a discrepancy between the two models.

In figure 5 we present two sets of force calculations based on two values of the constant,
Cvdw, for the exact and approximate models. In figure 6 two sets of profiles for two separations
are shown. The greater the attractive interaction, the more elongated the profile (in general)
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approximate (9) (curve without symbols) equations, under the conditions of figure 2. The curves
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Figure 5. Comparison of the total attractive van der Waals force between a droplet and a solid
particle, (10), both uncharged, based on the exact (6) (curve with symbols) and approximate (9)
(curve without symbols) profile equations. Hamaker constants are Cvdw = 1 × 10−20 J (leftmost
curves), Cvdw = 5 × 10−20 J (rightmost curves). Other droplet parameter values are the same as
that of figure 2.

and the greater the deviation between the two predictions. In this case, however, the greatest
source of the error lies in the absence of the curvature factor, W(r) or W(s), from both the
profile equation (9) and the corresponding integral giving the force

2π
∫ Rc

0
rπ(D(r)) dr
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Figure 6. Comparison of the profiles predicted by (6) (curves with symbols) and by (9) (curves
without symbols), under the conditions of figure 5. The curves correspond to Cvdw = 5 × 10−20 J
and minimum separation D (0) = 420 Å (lower profles), D (0) = 20 Å (upper profiles). The inset
shows a closeup of the region near the apex in the D (0) = 420 Å case.

(compare this with (10)). In the examples shown, neither the rupture limit, equation (23), nor
the singularity, γ + σ(r, z(r)) = 0, has been reached. In fact, the effective reduction in the
surface tension, 0 < γ + σ(r, z(r)) < γ , in the examples shown is not significant enough to
introduce dramatic differences in the profiles. Naturally, for drops with much lower surface
tensions, this influence would be greater. It remains the case, however, that differences exist
even for weak attractive interactions due to curvature effects, and that the other limiting factors
contribute to the overall shape instability.

3. Concluding remarks

We summarize the important points in this paper.

• We derive the exact differential equation describing the profile shape of a sessile drop
under external influences, (6). It is this equation that must be employed in a complete and
self-consistent scheme, whereby one determines simultaneously both the exact droplet
form and the interaction free energy density (e.g. from colloidal electrostatic or van der
Waals’ interactions).

• An example of numerical calculations of solutions to the exact equation, compared to
solutions of an approximate equation presently employed in the literature, indicate that for
sufficiently weak interaction, free energy densities/pressures and sufficiently large bodies,
there are negligible differences. However, for positive surface energies of sufficient
magnitude, discrepancies in the force and profiles are present partly due to errors in the
distance evaluation and partly due to curvature effects. For negative surface energies, the
dominant source of error is the lack of account of droplet curvature in the approximate
model primarily in the evaluation of the net force.

• The exact equation suggests, and the numerical examples confirm, that repulsive external
(i.e. positive) surface energies actually aid in stabilizing the drop against deformation,
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while attractive (i.e. negative) energies destabilize the drop, promoting or enhancing
deformation.

• An inherent singularity in the governing differential equation (not present in any of the
approximate equations used presently) suggests an instability limit, when the surface
energy (surface tension) is identically matched by an imposed attractive energy.

• Explicit limits on the magnitude of allowed total applied force (attractive or repulsive) have
been derived, (25) and (24). These denote sufficient conditions for interfacial instability.
Exceeding these limits results in the rupture of the droplet. An exact equation for the
extent of substrate contact as a function of the total applied force is also derived and used
to bound the variation of the hydrostatic pressure difference across the interface.
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